Linearized T-matrix and Mie scattering computations

نویسندگان

  • R. Spurr
  • J. Wang
  • J. Zeng
چکیده

We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the ‘‘shape’’ parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell’s theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available. & 2011 Elsevier Ltd. All rights reserved.

منابع مشابه

Effects of nonsphericity on the behavior of Lorenz–Mie resonances in scattering characteristics of liquid-cloud droplets

By using the results of highly accurate T-matrix computations for randomly oriented oblate and prolate spheroids and Chebyshev particles with varying degrees of asphericity, we analyze the effects of a deviation of water-droplet shapes from that of a perfect sphere on the behavior of Lorenz–Mie morphology-dependent resonances of various widths. We demonstrate that the positions and profiles of ...

متن کامل

A Computer Modeling of Mie-Scattering by Spherical Droplets Within the Atmosphere

The Earth’s atmosphere is an environment replete with particles of differ-ent sizes with various refractive indices which affect the light radiation traveling through it. The Mie scattering theory is one of the well-known light scattering techniques ap-plicable to modeling of electromagnetic scattering from tiny atmospheric particles or aerosols floating in the air or within the clouds. In this...

متن کامل

Mie Theory: A Review

In optical particle characterisation and aerosol science today light scattering simulations are regarded as an indispensable tool to develop new particle characterisation techniques or in solving inverse light scattering problems. Mie scattering and related computational methods have evolved rapidly during the past decade such that scattering computations for spherical scatterers a few order of...

متن کامل

Manifestations of morphology-dependent resonances in Mie scattering matrices

Lorenz±Mie computations of the extinction cross-section for monodisperse spheres show the existence of a very complex structure that includes extremely narrow peaks called morphology-dependent resonances (MDRs). The width and magnitude of the peaks are highly sensitive functions of the size parameter and the refractive index of the sphere. So far the MDRs have been calculated and observed mostl...

متن کامل

ON THE STABILITY AND THRESHOLD ANALYSIS OF AN EPIDEMIC MODEL

We consider a mathematical model of epidemic spread  in which the  population  is partitioned  into five compartments of susceptible S(t), Infected I(t), Removed R(t), Prevented U(t) and the Controlled W(t). We assume each of the compartments comprises of cohorts of individuals which are  identical with respect to the disease status. We derive five systems of equations to represent each of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013